
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2004

The effects of ion bombardment during deposition
upon the properties of hydrogenated amorphous
silicon-germanium thin films and photovoltaic
devices
Matthew Alan Ring
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons, Materials Science and Engineering Commons,
and the Oil, Gas, and Energy Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ring, Matthew Alan, "The effects of ion bombardment during deposition upon the properties of hydrogenated amorphous silicon-
germanium thin films and photovoltaic devices " (2004). Retrospective Theses and Dissertations. 812.
https://lib.dr.iastate.edu/rtd/812

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/171?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/812?utm_source=lib.dr.iastate.edu%2Frtd%2F812&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

The effects of ion bombardment during deposition upon the properties of 

hydrogenated amorphous silicon-germanium thin films and photovoltaic devices 

by 

Matthew Alan Ring 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Electrical Engineering 

Program of Study Committee: 
Vikram Dalai, Major Professor 

Alan Constant 
Mani Mina 

Surya Mallapragada 
Gary Tuttle 

Iowa State University 

Ames, Iowa 

2004 



www.manaraa.com

UMI Number: 3136345 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

UMI 
UMI Microform 3136345 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

ii 

Graduate College 

Iowa State University 

This is to certify that the doctoral dissertation of 

Matthew Alan Ring 

has met the dissertation requirements of Iowa State University 

Major Professor 

For the Major Program 

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

Ill 

To Alicia, 

without you I could not have completed this dissertation. 

Thank you for your support and love 

over the past seven years. 



www.manaraa.com

iv 

TABLE OF CONTENTS 

ABSTRACT vii 

CHAPTER 1: INTRODUCTION 1 

1.1: Background 1 

1.2: Standard Growth Model 3 

1.3: Previous Ion Bombardment Studies 5 

1.4: Research Objective 12 

CHAPTER 2: SAMPLE PREPARATION 13 

2.1 : Hot Wire Chemical Vapor Deposition 13 

2.1.1: Decomposition Reactions 13 

2.1.2: Gas Phase Reactions 14 

2.1.3: Surface Reactions 16 

2.2: Electron Cyclotron Resonance Plasmas 16 

2.3: Combined ECR-HW CVD Reactor 17 

2.4: Thin Film Deposition Methods 20 

2.5: Device Fabrication 22 

2.5.1 : SCLC n+-i-n+ device fabrication 22 

2.5.2: Photovoltaic p+-i-n+ device fabrication 25 

2.6: Contact Deposition 28 

2.6.1 : Metallization 28 

2.6.2: Reactive Sputtering 30 



www.manaraa.com

V 

CHAPTER 3: CHARACTERIZATION METHODS 32 

3.1 : UV/VIS/NIR Spectroscopy 32 

3.2: Photo and Dark Conductivity Measurements 37 

3.3: Infrared Spectroscopy and Hydrogen Content 38 

3.4: Activation Energy 41 

3.5: Sub-Band Gap Absorption 42 

3.6: Space-Charge Limited Current Defect Measurement 44 

3.7: Current-Voltage Characterization 45 

3.7.1: Short Circuit Current Density 45 

3.7.2: Open Circuit Voltage 47 

3.7.3: Fill Factor 48 

3.8: Quantum Efficiency 49 

CHAPTER 4: RESULTS AND DISCUSSION 52 

4.1 : Comparison of Hot-Wire and HW-ECR Materials 52 

4.1.1: Ejauc = 1.75eVMaterial 53 

4.1.2: Ejauc = 1 -65eVMaterial 55 

4.1.3: ETauc = 1-55eVMaterial 58 

4.1.4: Ejauc = 1 -45eVMaterial 60 

4.2: ECR Plasma Effects 61 

4.3: Filament Temperature Effects 66 

4.4: Photovoltaic Device Results 69 

4.4.1: J-V Results 70 

4.4.2: Quantum Efficiency Results 71 



www.manaraa.com

vi 

CHAPTER 5: CONCLUSIONS 75 

5.1: HWCVD and HW-ECR Materials 75 

5.2: Adaptations to the MGP Model 76 

5.3: HW-ECR Photovoltaic Devices 79 

5.4: Future Research Directions 80 

REFERENCES 

ACKNOWLEDGEMENTS 

APPENDIX 1: HW-ECR REACTOR 

81 

89 

90 



www.manaraa.com

vii 

ABSTRACT 

Ion bombardment is inherent in the growth of amorphous materials by 

conventional PECVD methods, such as electron cyclotron resonance (ECR) of 

radio-frequency (rf) discharge. In these methods plasma ions are necessary to 

decompose the source gases; however these ions also impinge upon the growing 

film surface, imparting their energy to the material. In conventional deposition 

techniques it is difficult to isolate the effects of the ions so a novel approach is taken 

in this research where an ECR ion source is attached to a "hot-wire" deposition 

reactor. This unique reaction system allows researchers to vary the ion 

bombardment density and energy to study the effects of the ion bombardment on the 

resulting material. 

Throughout this research, HW-ECR materials outperformed the HWCVD 

materials deposited at identical substrate temperatures for photovoltaic applications. 

The addition of ion bombardment saw a substantial decrease in Urbach energy, 

hydrogen microstructure, and a corresponding increase in photoconductivity and 

photosensitivity, regardless of band-gap. During the experiments, the ECR 

microwave power applied to the reactor was adjusted and showed that as band-gap 

decreased; less ion energy was required to show improvements in material quality. 

In addition, a lower filament temperature was required as band gap decreased to 

maintain a high photoconductivity. 

The first ever solar cell devices having intrinsic layers deposited by HW-ECR 

were deposited in this work, and show that this deposition method can produce solar 

cells with performance on par with current PECVD and HWCVD materials. In 

addition, these devices are deposited at much higher growth rates, reducing 

fabrication time dramatically. 
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The standard growth model fails to address the role of ion bombardment; 

however J. Robertson of Cambridge University has proposed a model for hydrogen 

ions' role in the removal of excess hydrogen. The results presented here support 

that model, and in addition neutral ions, such as helium, are shown to improve the 

material. Helium ions are postulated to aide mostly in the surface diffusion of 

reactive radicals during deposition, as helium is a non-reactive chemical species. 



www.manaraa.com

1 

CHAPTER 1: INTRODUCTION 

1.1: Background 

Researchers have long sought high growth rate processes to produce high 

quality amorphous materials to facilitate the production of devices containing thick 

layers of these materials. Hot wire chemical vapor deposition (HWCVD) has 

recently been the subject of intense research due to the very high growth rates that 

have been reported in literature using this method. HWCVD is also of interest due to 

its simplicity and the wide range of materials that can be deposited with this method. 

Although the method itself is inherently simple, consisting of only a heated wire 

within a vacuum chamber where reactive gases pass through, the actual chemistry 

that governs the deposition reaction is still under debate. The standard growth 

model attributed to Masuda [1], Gallagher [2], and Perrin [3] (the MGP model) 

suggests that the fundamental limitation to high deposition rates of electronics 

quality material is the surface diffusion of the silyl (SiH3) radical. The model 

theorizes that as a silyl radical diffuses near the surface of the growing film it can 

bond to a surface bonded hydrogen and remove it; or it can bond to a vacancy, thus 

adding to the growing film. It is this hydrogen abstraction by radicals that is 

postulated to be the rate limiting and defect-reducing step. However, this hydrogen 

abstraction reaction is also the subject of debate over the deposition chemistry. 

The MGP model is used extensively to explain plasma enhanced chemical 

vapor deposition (PECVD) in literature; however the model doesn't account for the 

empirical evidence that high quality materials are formed under low pressures with 

high ion bombardment levels using remote plasma processes [4-6]. Ions are always 

present in plasma discharges, as they are the end product of electrons ionizing the 

gases present in the plasma zone of the reactor; however there are no ions present 
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in HWCVD processes. Ions have been shown to be important in PECVD processes, 

where low ion energies and high ion densities have produced higher quality 

materials, stimulating a shift from radio frequency (rf) PECVD to VHF PECVD 

processes where more ions with lower energies are produced than conventional rf-

PECVD. How does one account for the improvement in film qualitiy that this 

increased ion bombardment makes with the MGP model? 

The discrepancy between the empirical data presented in literature and the 

basic theory of the MGP surface diffusion model is of great importance when 

studying high deposition rate processes. HWCVD has produced materials with 

photosensitivities in the 105 range and Urbach energies below 50 meV [7-9], typical 

of high quality hydrogenated amorphous silicon, without any ion bombardment at 

very high growth rates. PECVD has produced materials with Urbach energies below 

45 meV and photosensitivities in the range of 106, albeit at a fraction of the growth 

rate. Is the energy provided from the ions impacting the film surface enough to 

produce this difference in material quality? 

What is the role of ions in the growth reactions of a-Si:H and a-(Si,Ge):H? 

Does ion bombardment result in improved film quality due to the energy the ions 

impart to the surface of the growing film, or does PECVD produce better materials 

because it is a more mature technology? Some researchers speculate that the 

absence of ion bombardment makes HWCVD superior because the energetic ions 

are not disrupting the growth of the film, while others conclude that ions improve the 

material when a high density of low energy ions impinge upon the growing film's 

surface. It is clear that the effect of ion bombardment during film growth of 

a-(Si,Ge):H needs to be studied systematically where ion bombardment can be 

turned off or on with all other variables held essentially constant. 
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1.2: Standard Growth Model 

The standard growth model for PECVD and HWCVD is the model attributed 

to Masuda, Gallagher, and Perrin [1-3], otherwise known as the MGP model. The 

MGP model is used widely in literature to describe PECVD processes; however the 

effects of ion bombardment are not addressed in the model. 

Silane product Silyl 
radical Q 

Radical binds to 
surface hydrogen 

Substrate 

Figure 1.1: Hydrogen abstraction reaction as postulated by the MGP model 

The basic premise of the MGP model is that hydrogen is abstracted by a silyl 

(SiH3) radical creating a vacancy at the surface of the film. This vacancy is then 

filled by the addition of another silyl radical to the unbound electron left by the 

abstracted hydrogen. Figure 1.1 shows the hydrogen abstraction by a silyl radical 

and figure 1.2 shows the addition of another silyl radical to the vacancy. The MGP 
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Silyl 
radical 

Radical binds to 
surface, adding to film 

Substrate 

Figure 1.2: Film growth reaction from the MGP model 

deposition chemistry model is then reliant upon the surface mobility of the SiHs 

radical and the effectiveness of hydrogen abstraction by the silyl radical. 

Experimentally, this model fits the preponderance of evidence available. 

There are numerous studies that correlate the surface reaction kinetics through 

various sticking coefficient models and lend credence to the theory [2,3, 10,11], In 

addition to the sticking coefficient results, studies have shown that the model is 

consistent with the smooth surfaces requiring high surface diffusion of the ad-

radicals that are observed when depositing hydrogenated amorphous silicon and 

germanium alloys [10]. Also given as support to the MGP model is the observation 

that GeH3 or SiH3 cannot insert directly between a Si-Si, Ge-Si, or Ge-Ge bond [10], 

necessitating a two-step model. 
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1.3: Previous Ion Bombardment Studies 

Very few studies on the role of ion bombardment in deposition have been 

reported, and of those studies that have been published in literature, many are 

concerned with triode biasing schemes where an rf-PECVD reactor has an 

independently biased mesh screen installed between the anode and cathode. 

Studies of ion bombardment in literature are also mainly concerned with amorphous 

silicon exclusively, paying no regard to a-(Si,Ge):H, which is a more sensitive 

material to ion damage due to the decreased Ge-H bond energy as compared to Si-

Photosensitivity as a function of Vp0i (V) 
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Figure 1.3: Photosensitivity vs. the mesh bias potential [12] 
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H. Studies using the mesh bias potential method of adjusting ion bombardment are, 

however, fraught with ambiguity as the plasma regime and chemistry can change 

dramatically as the triode mesh potential is varied. 

In reports published by Aguas, et al [12], an interesting phenomenon is 

observed with the variation of the mesh potential. The results of these experiments 

indicate that as ion bombardment energy increases, the material properties improve 

to a point, after which a degradation is observed. In figure 1.3, a plot of 

photosensitivity versus the VP0i parameter, a measure of the mesh bias potential, 

Microstructure as a function of Vp0i (V) 
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Figure 1.4: Hydrogenated amorphous silicon microstructure vs. Vpoi [12] 
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one sees a great improvement in photosensitivity until a VP0I of -40 V. After 

reaching a peak value of -2x107 at 40 V, the photosensitivity drops and never 

reaches the same value again. A similar phenomena is seen with the variation of R 

as a function of VPoi, shown in figure 1.4, where R decreases with increasing Vr0i 

until Vpoi = 40 V. After the mesh potential reaches the 40 V, the microstructure 

increases and then proceeds to decrease again. Incidentally, as Vp0i increases, the 

ion bombardment energy also increases, and the decreasing microstructure after 

-50 V may be attributed to diminished hydrogen content in the material, however 

that data was not presented. 

These results suggest that ion bombardment is beneficial to the deposition of 

amorphous semiconductors, as increased ion bombardment energy improves the 

material to a point, then diminishes its properties. Ion bombardment can be viewed 

as a source of energy to the growing film, like substrate temperature, and like 

substrate temperature, an increase in value will improve the material to a certain 

point, then a degradation of material properties will occur. 

Other research groups have taken different approaches to the ion 

bombardment question. One group deposited a-Si:H on independently biased and 

heated electrodes placed between the anode and cathode in a PECVD reactor [13]. 

This group showed that increasing ion bombardment energy would improve 

materials grown at low substrate temperatures and degrade materials deposited at 

higher substrate temperatures [13]. The effect of ion bombardment has been 

interpreted as improving the diffusion of hydrogen at the growth surface that in turn 
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promotes hydrogen abstraction. This increase in hydrogen abstraction by radicals or 

ions then promotes the homogeneous bonding of SiH3 radicals and the properties of 

the resulting material [14]. This theory can describe the results shown earlier where 

the material first improves, then deteriorates, as that material sees the abstraction of 

hydrogen first as beneficial to allow better silyl diffusion and bonding, then as the 

amount of hydrogen abstraction increases, the bonding of silyls cannot keep up, and 

dangling bond defects are introduced into the material. The result of the increased 

dangling bond density is seen both as diminished photosensitivity, photoconductivity, 

and as lower microstructure with diminished hydrogen content. 

The beneficial effects of ion bombardment have been used by many to 

fabricate amorphous silicon devices on thin polymer sheets that cannot withstand 

the temperatures used for conventional deposition on glass substrates. One group 

of researchers from the jet-propulsion laboratory studied high ion-bombardment 

conditions for a-Si:H deposition to be used for thin film transistors [15]. This group 

found that ions with energies less than 10 eV were enhancing surface diffusivity and 

hydrogen abstraction, as the resulting TFT's from this material were of a quality 

similar quality to those produced by convention deposition on glass substrates [15]. 

In addition, these researchers observed the microstructure resulting from different 

ion bombardment conditions for substrates at room temperature. The results 

showed a decrease in microstructure as the plasma power density of the rf-PECVD 

reactor increased. This result again points to the benefits of ion bombardment as 

ion flux is shown to improve the surface reactions of the deposition, through surface 

mobility improvements. 
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In other research where high ion bombardment conditions are used in rf-

PECVD reactors, researchers observed improved microstructure again, improved 

photoconductivity at low substrate temperatures, and even improved 

photoconductivity in a-SiGe:H alloys [16]. The over-bombardment effect was seen 

also in a-Ge:H deposition [17], where lower ion energies showed microstructure 

improvements and photoconductivity increases, however the very high ion energies 

used in the researcher's argon ion beam set up created materials with very high 

defect densities and large absorption band tails [17]. 

Much of literature is devoted to showing how ion bombardment improves 

surface diffusion; however it is also postulated that ions can remove weakly bound 

hydrogen and thus create sites for the addition of new silyl radicals. Dalai 

postulates that hydrogen bound at the surface, and just below, can be removed by 

hydrogen ions [4]. Helium and argon ion bombardment is also discussed, where 

these inert ions are postulated to form dangling bonds at the surface to promote the 

addition of new silyl radicals, whereas the hydrogen ions penetrate deeper to 

remove bulk hydrogen and reduce voids and microstructure of the material [4]. The 

recent interest in VHF-PECVD deposition is also examined as he surmises that the 

lower energy ions help the surface reactions more than the higher energy rf-PECVD 

ions. The rf-PECVD ions generally require high pressures or triode screens to 

reduce their energy to levels where their bombardment becomes beneficial, as 

discussed earlier in this section. The VHP plasma also generates a higher density of 

ions, making the total number of ions impinging the surface greater, thus the benefits 

of low energy ion bombardment is more uniform. The current trend seen in the 
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switching to VHP from radio frequency plasmas is tied in to the benefits of ion 

bombardment. 

Prof. John Robertson at Cambridge University uses thermodynamics and 

reaction kinetics to propose a model that relates material growth including ion 

bombardment, and the resulting dangling bond density, and thus the material quality. 

He postulates, like Dalai, that hydrogen removal is the key step in the deposition of 

high quality amorphous material deposition [18]. Robertson proposes that in 

addition to hydrogen abstraction by the silyl radical, atomic hydrogen can remove 

surface bound hydrogen, and that hydrogen ions can penetrate into the film to 

remove subsurface hydrogen, as shown in figure 1.5. The process of removing 

physisorption addition 
(growth) 

SÎH3 H abstraction abstraction |gn induced H 
by atomic H loss 

o (H) . 

H saturated surface 

Figure 1.5: Hydrogen removal methods as postulated by J. Robertson [18] 
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excess hydrogen by ion bombardment is complex, as it depends upon the internal 

distribution of weak bonds. The weak bonds are generally thought to be the limiting 

factor when determining the overall defect density of the material, as these weak 

bonds will decompose to segregate the hydrogen and silicon atoms in a spinodal 

decomposition where the most energetically favorable arrangement is not a random 

distribution, but one grouped by atom. The hydrogen ions react with the weakly 

bound hydrogen and form a H2* complex that can then easily diffuse through the film 

to the surface [18] as it has a lower free energy transition state than a single 

hydrogen atom does. The driving force behind the diffusion to the surface of the 

film is the spinodal decomposition resulting from the chemical energetics of the 

system, and the fact that the complex diffuses with less energy cost than a single 

hydrogen atom as the complex is not attempting to bind as it travels through the 

material [18]. In this work experimental evidence is provided that supports this 

model, as reactive H+ ions produce superior materials compared to He+ ions. 

All of the literature reviewed here shows that ion bombardment plays a role in 

the deposition chemistry of amorphous semiconductors. The ion bombardment 

studies have shown definite correlation between the ion densities and energies, the 

resulting material quality; and also shown a theoretical reason for the benefit. In 

addition to the studies of ion bombardment effects, many researchers have used 

high ion bombardment conditions to produce materials of very high quality for many 

applications. Clearly ion bombardment must be included in any reasonable model 

for the deposition of amorphous semiconductors in a plasma enhanced chemical 

vapor deposition environment. 
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1.4: Research Objective 

The objective of this research is to study the effects of ion bombardment 

during growth on the physical properties of the resulting material. In examining the 

effects of ion bombardment, modifications to the MGP model will be suggested that 

will attempt to reconcile the standard model with the fact that photovoltaic grade 

materials are routinely deposited under high ion bombardment conditions. In 

addition, the model suggested by Robertson is supported by this research, and it is 

shown that neutral ions also promote the growth of high quality a-(Si,Ge):H materials 

of high band-gap. 

In addition to amending the MGP model, this research intends to successfully 

deposit the first a-(Si,Ge):H materials using the combined hot-wire ECR technique 

and prepare the first ever photovoltaic devices containing "intrinsic" layers prepared 

by HW-ECR. Materials deposited at growth rates above 1 Â/s are examined, as 

HWCVD is a high growth rate process. The materials deposited in this work are 

characterized by measuring photoconductivity, dark conductivity, the light/dark 

conductivity ratio, activation energy, Urbach energy, sub-band gap absorption 

coefficient, film thickness, growth rate, SCLC mid-gap defect density, and the FTIR 

microstructure. In addition, the first ever photovoltaic devices with i-layers deposited 

by the combined hot-wire ECR plasma were fabricated and characterized by 

measuring the illuminated J-V curve and both biased and unbiased quantum 

efficiency spectra. 
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CHAPTER 2: SAMPLE PREPARATION 

Samples were prepared using both hot wire chemical vapor deposition 

(HWCVD) and a novel process using HWCVD and a remote electron-cyclotron 

resonance (ECR) plasma. Each of these two deposition techniques were performed 

in the same reactor yet have unique deposition chemistries and parameters, as 

discussed below. 

2.1 : Hot Wire Chemical Vapor Deposition 

HWCVD is an emerging technology for the deposition of hydrogenated 

amorphous silicon and its group IV alloys [19]. Recent interest in HWCVD was 

sparked by reports from Matsumura, who deposited amorphous silicon using 

tungsten filaments and silane gas to produce electronics grade material [20]. 

Matsumura showed that by using the relatively simple HWCVD process, he could 

produce a-Si:H with properties near radio frequency (rf) plasma enhanced chemical 

vapor deposition (rf-PECVD) materials, at growth rates approximately 10-20 A/sec 

[20]. Also, it has been shown that by using suitable dopant gases, n or p type 

material [20], a-(Si,Ge):H [21], or microcrystalline silicon [22,23] can be grown by 

HWCVD. These attributes make HWCVD desirable for photovoltaic production 

because a single reactor operating at a high deposition rate can be used for the 

entire device fabrication [23]. 

2.1.1: Decomposition Reactions 

HWCVD chemistry begins at the hot filament, generally composed of 

tungsten (W) or tantalum (Ta). The catalytic filament is resistively heated by passing 

a current through the thin wire, and shows an increasing reaction probability with 
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silane as the filament temperature (T^) increases until approximately 1800°C at 

chamber pressures around 10 mTorr [24]. Under these conditions with Tfn above 

1800°C, the decomposition reaction probability of SiH4 reaches a maximum value as 

Tfii increases. The filament is never used at temperatures very near its melting point 

as filament failure and unintentional doping of the silicon may occur, therefore 

imposing a maximum operating Tfi|. 

When operating a HWCVD reactor with Tm in the range between 1800°C and 

the maximum operating temperature, silane undergoes complete thermal 

decomposition as shown in equation 1 below [24]. The silane gas contacts the 

heated filament and the thermal energy transferred to the gas molecule breaks all 

four hydrogen-silicon bonds producing the 

SiH^g) + filament(s)  —> SVg) +4 H ( 8 )  +  f i l a m e n t ( s )  (2.1) 

reaction shown in equation 2.1. When the filament temperature is less than 1800°C, 

the reaction at the catalytic filament becomes much more complicated as the release 

of Si and hydrogen from the filament does not occur as readily, and silicides 

containg silicon and the filament material can be formed on the filament [24]. 

2.1.2: Gas Phase Reactions 

After the molecular silicon and hydrogen are released from the decomposition 

of silane, two distinct classes of gas phase reactions occur: radical-silane and 

radical-radical reactions. Gallagher proposes that the main radical-silane reaction 

responsible for high quality films at typical deposition pressures is molecular 

hydrogen combining with silane to form hydrogen gas and SiH3, as shown in 

equation 2.2 [24]. This explanation is consistent with results from deposition studies 
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H + SiH 4 —> SiH^ + H 2 

Si + SiHA —> Si2H2 -\- H 2 

Si + SiH4^SiH + SiH3 

S i  +  S i H 4 ^ S i 2 H 4  

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2-6) S i S i H  4  — >  S i 2 H 2  H 2  

comparing hydrogen diluted and non-diluted silane gas feeds, where the material 

made from the diluted gases is nearer to the amorphous/microcrystalline phase 

border, and therefore has lower defect densities making it a higher quality material 

[25]. These results confirm what one would expect in excess hydrogen, where the 

reaction of equation 2.2 predominates as hydrogen gas thermally dissociates upon 

contact with the filament as well, providing an abundant supply of atomic hydrogen 

radicals. Other radical-silane reactions occur as well, as shown in equations 2.3 

through 2.6, which can provide undesirable radicals for high quality film deposition, 

such as SiH, SiH2, and Si2H4 [4,24]. The incorporation of SiH, SiH2, and Si2H4 into a 

growing film results in dangling bond defects that are deleterious to the electrical 

properties of the film. When the chamber pressure is high, higher silanes such as 

Si3H6 can be formed when the products of equations 2.3 through 2.6 combine with 

SiH#. These multiple silicon molecules have little surface mobility and lead to the 

introduction of defects if incorporated into the film, or dust formation that wastefully 

consumes the feed gases [24]. 

The PD product is a parameter used to characterize the reactions for a given 

reactor setup, where P is the chamber pressure and D is the distance from the 

filament to the substrate surface [19]. In the work by Molenbroek, et. al. [19], the 

authors concluded that a PD product of 10 to 15 mTorr-cm yielded the highest 
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quality material at high growth rates in a HWCVD reactor having a filament to 

substrate distance of 1-1.5 cm. The PD product describes the gas phase reaction 

progression after thermal dissociation, as the higher the product value more 

reactions can occur in the gas phase between the filament and the substrate, and 

conversely the lower the PD product, the fewer reactive collisions can occur. 

2.1.3: Surface Reactions 

The third class of reactions in HWCVD processes occur on and just beneath 

the growing film surface where weakly bonded hydrogen and/or silicon is removed or 

rearranged [16]. In these reactions there has to be enough energy to break the ~3 

eV Si-H bonds and release excess bonded hydrogen so it can diffuse out of the 

material and lower the overall hydrogen content of the film. In high growth rate 

processes, such as HWCVD, a high substrate temperature provides enough thermal 

energy to break weak hydrogen bonds and produce electronics quality materials with 

5-10 at.% hydrogen content. Higher substrate temperatures also provide greater 

surface mobility of SiH3 radicals, promoting more consistent film growth, as in this 

process there are no ions to add energy for hydrogen abstraction or silyl diffusion. 

2.2: Electron Cyclotron Resonance Plasmas 

ECR plasmas are ubiquitous in semiconductor manufacturing today, and as a 

result have been described and discussed repeatedly in literature [27-33], and will 

only briefly be discussed here. The ECR condition is predicted by Maxwell's 

equations and is caused by microwave radiation being directed perpendicular to a 

static magnetic field. This arrangement causes electrons to both rotate and move 

back and forth linearly, producing a dense cloud of energetic electrons moving in a 

vibrating helical trajectory that form ionized radicals when they contact gas 
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molecules in the same volume, creating the ECR plasma. In a remote plasma 

system, the ionized radicals are then directed toward the substrate through a stream 

of intrinsic gases such as silane or germane to form reactive species. The plasma 

species can also collide with the growing film surface imparting energy to break 

bonds such as the deleterious dihydride bonds, or rearrange silicon atoms. It is this 

function of ECR plasmas that is sought in this study to improve the film properties at 

low temperatures. 

When using ECR plasmas to provide ion bombardment during film growth, it 

is imperative to limit the ion energy from 2-5 eV to avoid damaging the film. ECR 

plasmas allow for the controlling of ion energy that reaches the substrate by 

controlling microwave power, magnetic field strength, and the chamber pressure. 

The use of low energy ion bombardment has been shown to improve 

photoconductivity in HWCVD prepared films [34,35], and its effects on other aspects 

of a-(Si,Ge):H is investigated further in this study. 

2.3: Combined ECR-HW CVD Reactor 

For this study, a remote ECR plasma unit was coupled with a HWCVD reactor 

as shown in figure 2.1 and in Appendix 1. An ECR plasma and catalyzing filament 

have been coupled together in previous investigations at Iowa State University 

[34,35], however there are some notable differences between the original system 

and the one shown in figure 2.1 below, such as an increased filament to substrate 

distance and a new gas outlet behind the substrate holder. 

In the reactor system, a 2.45 GHz microwave source and three stub tuner by 

Sairem of France was used to provide the microwave energy for the ECR plasma. 

The microwave power was varied between 50 and 100 W, however the settings on 

the tuner were seldom adjusted during the experiment. The quartz window used to 
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Figure 2.1: Schematic of Combined ECR-HW CVD 

maintain vacuum inside while allowing microwaves to enter the deposition chamber 

was cleaned regularly when using the combined ECR-HW CVD deposition process. 

The cleaning ensured consistent plasma conditions from deposition to deposition 

and reduces heating from microwave absorption by the silicon coating on the quartz. 

Two stationary magnets mounted around an 8 in. stainless steel tube supply 

the magnetic field required for the ECR condition to be met, as shown in figure 2.1. 

The magnets consist of a large wire coil powered by a DC constant current power 

supply with adjustable output. The ability to adjust the current output enables control 

of magnetic field that directly affects the plasma ion density. 

The gases used during deposition can enter from two areas in the reactor. 

The silane used to supply the silicon ultimately incorporated into the growing film 
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enters the reactor near the catalytic filament, as shown in figure 2.1. Other gases 

such as He or H2 that become ions in the plasma enter through a gas diffusing ring 

that surrounds the quartz window near the Sairem tuner. By segregating the gases, 

a greater amount of control over ion species and energy can be attained than with a 

single gas injection point. 

The catalytic filament is located in a vacuum cross separated from the plasma 

generation region by a restricting orifice that shapes the plasma into a diverging 

cone. The filament is oriented parallel to the substrate supported by two stainless 

steel rods each threaded into a copper vacuum feed-through. The filament is 

composed a 40 cm length of either tungsten or tantalum wire having a 0.5 mm 

diameter wound into a helix and spans a 7 cm distance. The filament to substrate 

distance of the reactor is non-adjustable and measures 10.5 cm, which is 

considerably longer than most other HWCVD reactors. This large distance 

minimizes substrate heating through radiation. 

A Watlow PID temperature controller connected to an Omega thermocouple 

mounted in a recess machined into the substrate holder control the temperature of 

the substrate. The PID controller supplies power to a 120 V, 600 W Chromalox disc 

heater mounded outside the vacuum on the substrate holder and insulated from the 

ambient air temperature by silica board. The substrate holder itself is mounted at 

the end of the reactor, as shown in figure 2.1. The substrate is held firmly against 

the substrate holder by a stainless steel mask covering the entire end of the holder 

except for a 1 in.2 square. 

The deposition chamber is evacuated by a Pfifer-Balzer turbomolecular pump 

backed by a mechanical backing pump with a continuous N2 purge to prevent toxic 

gas accumulation in the ventilation system. A gate valve directly ahead of the 

turbomolecular pump controls chamber pressure during deposition and a small 
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mechanical pump with a separate valve into the chamber accomplishes chamber 

roughing. The vacuum system provides a background pressure in the order of 10"7 

Torr while typical deposition pressures are from 100 to 1 mTorr. 

2.4 Thin Film Deposition Methods 

Thin film depositions require a high level of care be taken during processing 

to ensure a consistent and high quality result. Over many years of amorphous 

hydrogenated silicon deposition at the MRC, a general procedure has been 

developed for ECR-PECVD thin film growth to ensure repeatability of results. When 

using HWCVD or HW-ECR CVD, an almost identical process was followed. 

All substrates were cleaned in a similar manner, whether 7059 Corning glass 

for electrical characterization or double side polished silicon wafers for hydrogen 

content and microstructure determination. The substrates are first boiled in acetone 

for 15 minutes to remove organic compounds, such as waxes and oils that adhere to 

the materials after handling. A 15-minute ultrasonic bath in methanol then removes 

the traces of acetone from the first cleaning step and most other compounds that 

may still be adhered to the substrate. The substrates are stored in methanol until 

required for use, and then blown dry with nitrogen immediately before installation 

into the substrate holder and insertion into the reactor. 

After the dried substrate is loaded into the reactor system, a series of purges 

is undertaken to remove any moisture that may have entered the system during the 

brief time it was opened to the atmosphere. The purges consist of 10 nitrogen 

purges that flush any oxygen from the system, then ten silane and hydrogen purges 

that remove moisture, and finally five hydrogen purges to rinse the heavy silane 

molecules out of the system. 
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While purging, the substrate temperature is ramped up to fifty degrees 

beyond the deposition conditions, to ensure complete heating of the entire thermal 

mass associated with the substrate holder and mask. After the controller has 

damped the temperature variations and indicates the initial set point as the substrate 

temperature, the set point is decreased to the desired deposition condition. This 

overheating also provides an increased thermal loading of the stainless steel 

substrate holder to ensure heat conduction to the substrate surface. 

As the substrate cools to the correct temperature for deposition, an ECR 

discharge consisting of the same gas ratio as the actual deposition layer is 

deposited on the interior reactor surfaces to seal in any atmospheric contaminants, 

such as oxygen, introduced when the new substrate was loaded into the chamber. 

To ensure that the substrate itself is not coated with this dummy layer, a shutter is 

mounted on a magnetic linear motion feed-through is placed in front of the substrate 

holder. This dummy layer is deposited the under the same plasma conditions for 

each band-gap material for at least thirty minutes to reduce systematic error from 

contamination. 

After the dummy layer is complete, the hot wire filament must be cleaned 

before it can be used in HWCVD. The filament-cleaning step consists of flowing 

hydrogen at 25 seem into the chamber via the intrinsic line while heating the filament 

to approximately 2200°C for five minutes at a pressure of 15 mTorr. In addition to 

removing the dummy layer from the filament surface, any silicides that formed at the 

cooler ends of the wire during the previous deposition are also etched away, 

improving the subsequent film's properties, as postulated by Ishibashi [36]. 

After the filament cleaning procedure, the gas flows, plasma conditions, and 

the catalytic filament current to be used during deposition are set and the reactor is 

allowed to come to steady state before the shutter is opened to begin deposition. 
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After the shutter is opened and the timer triggered, the reactor conditions are 

checked periodically during the deposition time to ensure consistency. The actual 

deposition time for each sample varies so that a film of ~ 1 pm thickness is grown. 

The deposition is stopped by first closing the shutter, and then turning off the 

tantalum filament and the plasma if necessary. The PID substrate temperature 

controller is set to ~30°C and the flowing gases are shut off and all lines purged. 

The chamber is then filled with silane and hydrogen, in approximately equal parts, to 

a pressure of 1 Torr to aid in cooling of the film. After the film is cooled to below 

150°C, as indicated by the thermocouple, the silane-hydrogen is evacuated and one 

nitrogen purge performed before filling the chamber with nitrogen up to atmospheric 

pressure for sample removal. 

2.5: Device Fabrication 

Both p-i-n solar cell devices and n-i-n devices for use in characterizing the 

mid-gap defect density by the space-charge limited current (SCLC) technique were 

fabricated in this study. The fabrication of each of these devices follows a similar 

method, where a conventional PECVD n+ layer is deposited on stainless steel 

substrate, the intrinsic layer (or layers) is deposited by HWCVD or HWECR, and 

then the final n+ or the p+ top layer is deposited by ECR plasma deposition. 

2.5.1: SCLC n+-i-n+ device fabrication 

The n+-i-n+ devices used for SCLC characterization are essentially thin 

intrinsic material layers with whole surface contacts on the top and bottom of the 

layer. The contacting layers above and below the intrinsic material being 

characterized are very highly doped so that the conduction band is nearly incident 

with the Fermi level to allow for transport of electrons into the bulk of the material. 
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Figure 2.2: Schematic and non-biased energy-band diagrams for a typical n+-i-n+ device 

used for SCLC midgap defect density of states determination 

Figure 2.2 shows a schematic representation of the device and a sample band 

diagram. In the band diagram notice the ends of the devices where the Fermi level, 

denoted by the dashed line, is coincident with the conduction band of the n+ layer. If 

hole trap states were to be examined by injecting holes into the material a p+-i-p+ 

device would be used. 

These devices are fabricated by first obtaining an n+ layer deposited on a 

stainless steel substrate. The stainless steel substrates are cleand in the same way 

that the 7059 Corning glass is prepared, with an acetone boil followed by a methanol 

ultrasonic rinse. The substrates are stored in methanol until used for deposition, 

when they are blown dry with dry nitrogen gas. 
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After drying the substrate, it is loaded into the VHP PECVD reactor where an 

amorphous silicon layer doped with phosphorus is deposited by striking a 10 W 

plasma in an atmosphere containing silane, hydrogen, and phosphine gases. After 

deposition is complete, the substrate and film is removed from the reactor after it has 

cooled to below 100°C, and placed directly into a methanol bath. The methanol 

keeps oxygen from reacting with the silicon in the film and forming a thin oxide layer. 

The substrate and thin n+ film are then transferred into the HW-ECR reactor 

for deposition of the intrinsic layer. The sample is blown dry with nitrogen again 

before being loaded into the vacuum system. The intrinsic layer deposition is 

performed just as material depositions are, with the exception that the substrate 

temperature offset is lower with stainless steel that with the 7059 glass. 

Once the intrinsic layer deposition is complete, the device is allowed to cool to 

~100°C in a hydrogen and silane atmosphere and then it is removed and again 

placed in a methanol bath for storage until the top layer deposition can be 

completed. The top layer is the final layer deposited using PECVD and is deposited 

using silicon and germanium if the intrinsic material is a-(Si,Ge):H, otherwise due to 

conduction and valence band mismatch between a-Si:H and lower band-gap a-

(Si,Ge):H, the SCLC curves exhibit non-symmetrical behavior and are not reliable for 

determining the mid-gap defect density of the material. The top layer material is 

deposited using a mixture of silane, germane, hydrogen, and phosphine gases to 

grow a highly doped amorphous silicon-germanium alloy where the conduction band 

is very near the Fermi level in that material. Circular chromium contacts are then 

deposited on the top layer after top layer deposition is completed to finish the device 

for use in SCLC characterization. 
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2.5.2: Photovoltaic p+-i-n+ device fabrication 

The deposition of photovoltaic devices for this research and the n-i-n devices 

for SCLC and are essentially the same, with the bottom n+ layer and intrinsic layers 

being deposited identically. The difference between the two device types comes in 

the top layer and contacts used on each device. 

The fundamental behavior of the devices is very different, however. The 

SCLC device serves simply as a charge injection device where a rectifying contact 

forms a diode that can be analyzed to determine the amount of trapped charge in 

the bulk layer. The photovoltaic device is different in that it generates carriers and 

needs to collect each carrier type to generate current to power an outside circuit. 

ITO layer 

p+ SiC top layer 

i-1 Buffer layer 

Absorption layer 

i-3 a-Si:H layer 

n+ bottom layer 

Stainless 
Steel 

Substrate 

Polished SS substrate 

ITO contact 
layer 

Intrinsic 
HWECR 
layer 

i-1 Buffer layer 

i-3 Buffer layer 

Figure 2.3: Schematic and energy-band diagrams for a typical p+-i-n+ photovoltaic device 
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Photovoltaic device design is very complex as there are many parameters 

that can be varied to improve the carrier generation and collection from the available 

solar spectrum. In fact, the motivation behind depositing the various band-gap 

silicon germanium is the use of a graded band-gap absorption layer, which promotes 

carrier collection, and the ability to match the absorption spectrum to the solar 

spectrum. For the devices examined in this research, only the simplest of devices 

were fabricated, with a single band-gap intrinsic layer, an n+ bottom layer with thin a-

Si:H buffer, a standard a-SiC:H graded buffer layer, the research group's standard 

p+ top layer, and ITO top contacts, as shown in figure 2.3. Also shown in this figure 

is the band structure of the device, which promotes carrier collection while reducing 

top surface recombination through the graded silicon carbide top p+ layer. This top 

layer is also of a band-gap larger than the intrinsic layer, which enables more 

photons to pass through the top layer into the absorption layer, and thus increase 

the number of carriers generated, and the resulting power output. 

The devices were fabricated in multiple reactors to reduce the possibility of 

cross-contamination of the dopant materials into the low-defect intrinsic layers. 

Table 2.1: Summary of photovoltaic device layers shown in figure 2.3 

Layer Material Method Reason 
n+ n+ a-Si:H ECR-PECVD Forms junction 

i-3 a-Si:H ECR-PECVD Blocks P 

i-2 a-Si:H HW-ECR EHP Gen. 

i-1 a-(Si,C):H ECR-PECVD Blocks B, Eg 
matching 

P+ p+ a-SiC ECR-PECVD Forms junction 

ITO ITO Sputtering TCO contact 
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Table 2.1 shows a summary of the device layers shown in figure 2.3, including what 

deposition method was used to deposit the material. The buffer layers on either side 

of the i-2 layer deposited by HW-ECR help ensure both band-gap matching and 

efficient blocking of dopant migration into the HW-ECR layer during subsequent 

processing. 

Cross-contamination is important to eliminate because it is detrimental to 

minority carrier transport in the device. Both carriers generated in photo-generation 

events must be captured to provide power to an outside circuit in an amorphous 

silicon photovoltaic device. If there was contamination of the intrinsic layer by 

phosphorus, many charged defect states would be formed creating very efficient 

hole traps. These hole traps would decrease the hole lifetime of the device, the 

range of the material, and thus degrade quantum efficiency. Figure 2.4 shows two 

electric-field intensity diagrams for sample i-layers. The diagram for the low-defect 

density material shows the solid unbiased field profile and the dashed forward-

biased field profile both above 103 V/cm, which will still force the material to behave 

as field-limited. In the defective material to the right, notice that although the 

,+ n+ n 
0.4 |im 0.4 (xm 

Low defect density High defect density 

Figure 2.4: Electric field intensity diagrams for sample i-layers in p-i-n devices 
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unbiased solid line is above 102 V/cm, the forward biased dotted line goes to 

essentially zero field as there are enough charged defects to develop sufficient 

space-charge to compensate for the field. For the length that there is non-sufficient 

field, the devices exhibits diffusion-limited transport, and this is detrimental to the QE 

of the device as typical diffusion lengths are 1/3 of the i-layer thickness, so it is 

highly unlikely that carriers will cross the entire layer to be collected. 

2.6: Contact Deposition 

Several types of contacts were used in the fabrication of p-i-n devices, n-i-n 

devices, and the thin films for electrical characterization. Metallization was used to 

deposit the contacts for the thin films and the n-i-n devices for SCLC 

characterization, while reactive sputtering was used to deposit the transparent 

conductive contact made of indium tin oxide (ITO) used on the p-i-n solar cell 

devices. 

2.6.1: Metallization 

Electrical measurements were performed on thin films deposited on Corning 

7059 glass and the n-i-n devices deposited on polished stainless steel. For 

electrical characterization of the thin films, coplanar contacts such as the ones 

shown in Fig. 2.5a were deposited onto the surface of the film. The n-i-n devices 

had chromium dot contacts deposited on their surfaces, much like the ones 

represented in Fig. 2.5b. 

Both contact types were deposited in the same apparatus consisting of a 

glass bell jar evacuated by a large Leybold turbomolecular pump. Inside the bell-jar, 

chromium rods are resistively heated below a fixed plate with four holes for placing 



www.manaraa.com

29 

the masked samples over. A shutter is placed below the fixed plate to control the 

length of metal deposition. 

The metallization process begins by loading the sample with appropriate 

mask placed over the thin film surface. The bell-jar is then roughed out and then the 

gate valve is opened slowly to allow the turbo pump to evacuate the chamber to 

below 3x10"6 Torr. Once the desired base pressure is attained, the voltage across 

the chromium rods is gradually increased until the chamber pressure first increases, 

then decreases at 10 V, 15 V, then 18 V, and finally 23 V. At the final voltage 

setting, a piezoelectric crystal deposition controller is started and 100Â of chromium 

is pre-deposited with the shutter closed to remove the outer layer on the chrome 

rods that may be contaminated from atmospheric gases, and to bury those 

contaminants beneath a layer of chromium deposited on the interior surface of the 

deposition chamber. Immediately after the pre-deposition, the thickness monitor is 

again started at the same time as the shutter is opened, and 500Â of chromium is 

deposited. After deposition, the sample is removed from the bell-jar and silver paint 

o 
o 
o 
o 
o 

a b 

Figure 2.5: Diagram for mask of coplanar contacts (a) and chromium dot contacts (b )  
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is applied to prevent chrome oxidation. The sample is placed on a heated surface 

for 10-20 minutes to remove the solvent from the silver paint before being placed in 

an oven set to 160-C oven for 1.5 hours prior to electrical testing. 

2.6.2: Reactive Sputtering 

The p-i-n devices are characterized using transparent conductive oxide 

contacts, much like commercial amorphous silicon solar cells use. The material 

deposited for these contacts is sputtered from an indium-tin oxide (ITO) target in an 

argon plasma with a small amount of oxygen introduced into the sputtering 

atmosphere. The substrate is heated to 175°C during the deposition and the 

deposition pressure is 5 mTorr. The flows of argon and 1% O2 in argon balance are 

controlled by simple Matheson screw valve flow meters where flow is indicated by a 

weighted ball in a graduated glass tube. 

The sputtering reactor consists of a large vacuum chamber evacuated by a 

Leybold turbomolecular pump. The pump can be closed off to the system by a gate 

valve, and the chamber itself has two sputtering targets and two Advanced Energy 

0.4 cm 

Q O 

O O O  

Figure 2.6: Device mask for depositing ITO contacts on solar cell devices 
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plasma guns to excite the argon atoms. The deposition time is controlled by a 

shutter, and generally occurs for 5 minutes, with a 2 minute period beforehand for 

the targets to clear off any surface contamination with the shutter closed. The gas 

flows during the deposition are 100% of the controller range for Ar and 20% for the 

1 % 02 in Ar and the applied sputtering power is 20 W. 

The ITO material is much more conductive than the amorphous 

semiconductors comprising the solar cell, but still less so than a metal contact. 

Average resistivities of ITO are -2.6 x10.4 Q cm, and the optical transmittance in the 

visible spectra is generally from 80% to 90% [37]. These properties help maximize 

the amount of light absorbed and the amount of current available to power other 

devices. 

The mask used for the ITO deposition is a thin nickel sheet with nine holes 

with a diameter of 0.4 cm each placed in them. The very thin mask eliminates shorts 

caused by thicker masks biting into the very thin device when tightened below the 

substrate holder that is placed into the sputtering chamber. Also, the thin mask 

allows for very minimal shadowing and therefore a more uniform and reproducible 

contact area. The mask is as shown in figure 2.6 above. 
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CHAPTER 3: CHARACTERIZATION METHODS 

The materials and devices grown in this study were characterized by many 

methods. The data extracted is used as a basis of comparison between the hot-wire 

material and the materials subjected to ion bombardment. Of the methods used, 

some are specific to thin films of material grown on Corning 7059 glass, while others 

are used to characterize devices grown on stainless steel substrates, and still others 

are used on thin films deposited on silicon wafers. All of the characterization 

methods used in this study are described below. 

3.1: UV/Vis/NIR Spectroscopy 

An ultraviolet/visible/near-infrared (UV/Vis/NIR) spectrophotometer is 

used to determine the film thickness and the optical band gap from the absorption 

coefficient variations with photon energy. The system used to obtain the UV/Vis/NIR 

spectra is a split beam apparatus manufactured by Perkin-Elmer and interfaced to a 

standard PC. 

Split-beam spectrophotometers generate a single monochromatic light beam 

that is then split by optics into two parallel beams of the same incident power. One 

of the two beams is aimed directly at photo-detector while the other passes through 

the sample and substrate. The difference in transmission is then measured at the 

photo-detector as the difference in the two beam powers. 

The light not transmitted through the sample and collected is either reflected 

or absorbed. The substrate also reflects light, and as a result an interference pattern 

is observed in the transmission vs. wavelength spectra as shown in figure 3.1. The 

interference can be used to determine the thickness of the film by comparing the 

positions of adjacent peaks or valleys as in equation 3.1 [38]. In equation 3.1, n is 
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Figure 3.1: Sample plot of spectrophotometer transmission data 

the refractive index of the film between the two peaks, indicated by A7 and A2, and t is 

the calculated film thickness. This is the method used to calculate the thickness of 

X 2  

'= 2n(\ - ) (3'1) 

thin films deposited on 7059 Corning glass. For devices deposited on stainless steel 

substrates, the reflection assembly consisting of two mirrors that is inserted in the 

beam path and causes the beam to be incident upon the detector only when another 

mirror is placed atop the assembly. This technique generates a similar pattern as 

seen in figure 3.1, and equation 3.1 can still be used to obtain the total thickness. 
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In addition to the film thickness, the absorption coefficient can be obtained 

through UV/Vis/NIR. The absorbance vs. wavelength spectra can be measured 

using the spectrophotometer and by using index of refraction data from literature a 

reflection vs. wavelength spectra is generated based on equation 3.2, where n is 

index of refraction and R is reflectance, both of which are function of wavelength. 

l - v^w 

In some cases for silicon-germanium films, actual reflection spectra are used 

instead, as literature data is not as readily available for these alloys as for 

amorphous silicon. The absorption coefficient is then calculated using the film 

thickness and both absorption and reflection as functions of wavelength, as shown in 

equation 3.3 [38]. 

2.303-AU)-In 

a(A)  =  

i i 

_l-j?(/l)_| (3.3) 

Once the absorption coefficient is known for a range of wavelengths, the 

material's band gap can be estimated. The optical gap can be approximated as the 

energy where the absorption coefficient is equal to 10* cm"1, known as the E04 

energy. This is a simple method of estimating the band gap of the material as its 

determination is made graphically from a plot of the absorption coefficient a vs. 

photon energy, such as figure 3.2. Care must be taken however to account for the 

reflection interference seen at lower energy values, as the actual absorption spectra 

is the difference of the curve traced by the top of the peaks and the curve formed by 

the bottoms of troughs caused by interference. 
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Figure 3.2: Sample plot of a vs. photon energy to determine the E04 energy 

The band gap of the material can also estimated using Tauc's expression, 

shown in equation 3.4, which describes the absorption that occurs at photon 

energies above the E04 energy. The Erauc energy can be determined by plotting 

(a(A) Eph)1/2 vs. photon energy (Eph), then finding the intercept of that line with the 

Ja(X)-Ep l l  =B(Eph-ETauc) (3.4) 

x-axis. These two approximations for the material's band gap should agree such 

that Eiauc is -.15 eV less than E04 for hydrogenated amorphous silicon. A typical plot 

used for the determination of Tauc's Gap is shown in figure 3.3. Tauc's gap is a 

more ambiguous measure of band-gap experimentally as the slope of the linear 

E04 energy =1.93 ev 
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region is sometimes difficult to determine. Unfortunately, Tauc's gap is more 

thoroughly based on the theoretical mobility gap between the conduction and 

valence bands whereas E04 is a more empirical parameter. It is important to 

measure the band gap as deposition parameters change because it gives an 

indication to the degree of crystallinity of the material, the germanium content, and 

the amount of hydrogen incorporated into the film. The E04 energy is preferable for 

reporting bandgap data as it has much less experimental ambiguity, however 

literature is strewn with materials characterized using Tauc's gap, so it is calculated 

here for comparison purposes. 

Tauc's Gap Determination for 3/1683 
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Figure 3.3: Sample plot for the determination of the Tauc's gap 
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3.2: Photo and Dark Conductivity Measurements 

Determining the suitability of hydrogenated group IV alloy thin films for 

electronic applications begins by examining the conductivity of the material under 

illumination and comparing it to the material's conductivity under dark conditions. 

This comparison of conductivity is known as the photosensitivity of the material and 

is a general indication to the quality of the material as high quality a-Si:H has a 

photosensitivity greater than 105, a-(Si,Ge):H with an E04 gap of 1.5 ev is ~102, and 

crystalline silicon or germanium should be ~1. A large increase in the absolute 

conductivity of the material should be seen as crystalline nature of the material 

varies from amorphous to single crystal material as the mobility and lifetimes of the 

crystalline material are much greater than the amorphous material. 

The light and dark conductivity measurements are performed in an apparatus 

consisting of a large aluminum heat sink cooled by a fan placed in a light impervious 

box. Two spring-loaded probes are then placed on the co-planar metallic contacts 

described in the contact deposition section. These probes are connected to a 

Keithly 617 electrometer and a Keithly 230 voltage source to supply a 100V bias 

between the two coplanar contacts and measure the small resulting current. Steel 

panels and an aluminum door sealed with Velcro and magnets enclose the sample 

and heat sink to form the light-tight box that prevents light from striking the during 

the dark conductivity measurement. The photo current is measured by turning on a 

quartz lamp directly above the sample that has a calibrated aperture between itself 

and sample so that 100 mW/cm2 is incident upon the sample, which is the standard 

AM 1.5 illumination that is reported in literature for photoconductivity. 

The conductivity is calculated as shown in equation 3.4 by multiplying the 

width between the coplanar contacts (W) with the current measured (I) during the 
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WI 

°UD LVt (3-4) 

test. This product is then divided by the product of the contact length, applied 

voltage, and the film thickness. For these experiments, the ratio of L/W was 20. 

3.3: Infrared Spectroscopy and Hydrogen Content 

Another method used to describe the quality of a-(Si,Ge):H thin films is IR 

spectroscopy. The infrared spectrum of hydrogenated amorphous silicon can be 

used to determine the hydrogen content of the film and the microstructure parameter 

R [39]. The hydrogen content of amorphous silicon-germanium alloys is an 

important parameter because excess hydrogen reduces the conductivity of the 

material and is associated with Stabelar-Wronski degradation. [40] The 

microstructure parameter R, as defined in equation 3.6 [39] for silicon bonds and 

equation 3.7 for germanium bonds indicates the relative amount of dihydride 

bonding in the material that is strongly associated with S-W degradation and 

generally decreased electronic properties. 

Infrared spectroscopy requires deposition of the subject material on a silicon 

wafer that has had both sides polished to avoid scattering problems. After the 

material is deposited, it is placed in the IR spectrometer with a background sample 

of wafer. The spectrometer then measures the mid-1 R spectral absorbance of the 

(3.6) 

(3.7) 
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background and sample at a 4 nm resolution from 4000 cm"1 to 400 cm"1 (2500 nm 

to 25000 nm) and produces a smoothed curve as shown in Fig. 3.4. 

To determine the hydrogen content of the film, the region of the spectra from 

500c cm"1 to 800 cm"1 is examined, and a Gaussian peak fitted to the 640 cm"1 peak 

and the 565 cm"1 peak. The area of the relative absorbance peak at 640 cm"1, which 

is due to SiH, SiH2, and SiH3 wagging modes, or the 565 cm"1 peak which is 

analogous but due to germanium, is then multiplied by a conversion factor to 

determine the atomic hydrogen percent of the material, as shown in equation 3.8 

3-1540 complete FTIR spectra 
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Figure 3.4: FTIR spectra of a-Si:H deposited by HWCVD 
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[41], where Ch is the hydrogen fraction in atomic percent, A64o is the area of the 

relative absorbance peak at 640 cm"1, and t is the film thickness. 

C *  = 1 . 1 2 5 ( 3 . 8 )  

The silicon microstructure parameter RSi is calculated from equation 3.6, 

however the peaks for the SiH2 and SiH stretching at 2090 and 2000 cm"1, 

respectively need to be deconvoluted into separate Gaussians. The same is true for 

the Roe parameter where the GeH peak at 1880 cm"1 and the GeH2 peak at 1970 

cm"1 needs to be modeled as independent Gaussian curves whose sums create the 

overall spectra shape. In addition, the baseline is corrected to remove effects from 

3/1175 HWCVD Tsub =300C 
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Figure 3.5: Sample spectral deconvolution for microstructure parameter determination 
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the thin film reflection interference. All of these functions are performed in Origin, a 

mathematical software package that can easily model Gaussians to fit the shape of 

the spectra. The baseline is modeled as a polynomial where specific points are 

chosen on the spectra that are known to be the baseline and the remainder of the 

function is modeled. Figure 3.5 shows an example of a de-convoluted spectrum 

used to quantify the peak areas for SiH and SiH2 peaks in a hydrogenated 

amorphous silicon sample and give 95% confidence limits that were used to 

calculate the error limits to the measurement. 

3.4: Activation Energy 

The conductivity of a semiconductor is proportional to the number of carriers 

available to transport charge from one reservoir to another, such as from one ohmic 

contact to another located some distance away. Since the intrinsic concentration of 

carriers is dependent upon temperature, as is the number of ionized impurities in a 

doped material, current should vary with the material temperature according to an 

Arrhenius relationship. Using the definition of conductivity and the drift equation, it is 

easy to relate the current of a semiconductor under steady bias to temperature 

though equation 3.9, where EA is activation energy, kB is Boltzman's constant, T is 

the temperature in Kelvin, and l0 the baseline current, or pre-exponential factor. 

I = I0e t,T <3'9) 

For amorphous, lightly doped semiconductors, the vast majority of electrons 

will be located in states at or below the Fermi energy and since it is these carriers 

that need to be energized into the conduction band for current to flow, Ea is a 

measure of the location of the Fermi energy in these materials. 
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When measuring this parameter, the sample is placed on a heated aluminum 

block and a spring-loaded contact is placed on each side of the coplanar contacts 

described earlier. The sample is then sealed in a light impervious box and heated to 

~ 210°C and then a 100V bias applies. Current measurements are taken from 

210°C to 130°C in 10 degree increments and then ln(l/l0) is plotted vs. 1/T. This plot 

is then modeled by linear regression and the slope of that line multiplied by kB to 

determine the activation energy. High quality a-Si:H materials typically exhibit 

activation energies approximately 0.9 eV, while a-(Si,Ge):H materials exhibit 

activation energies of approximately one-half their E04 bandgap. 

3.5: Sub-Band Gap Absorption 

As the name implies, the sub-gap absorption measurement in amorphous 

semiconductors evaluates the absorption of low energy photons whose energy is 

below that of the optical gap of the semiconductor. This measurement relies on the 

dual-beam photoconductivity technique developed by Wronski et. al. [42], where a 

strong DC beam is used to fix the quasi-Fermi levels of the material, keeping 

available states in the mid-gap region filled with photo-generated carriers. The 

second beam is an AC beam fixed at 13.5 Hz by a chopper to remove noise 

associated with the 60 Hz current used to power the equipment. The beam from the 

light source is then modified by diffraction grating in a monochrometer to produce a 

narrow wavelength spectrum that is then aimed at the film between the coplanar 

contacts to supply additional carriers and increase the material's conductivity. The 

AC beam, after passing through the monochrometer and chopper, passes through a 

series of high pass filters to reduce the harmonic frequencies associated with the 

beam exiting the monochrometer, and to prevent low-wavelength light from reaching 

the sample until it is desired. The wavelengths used for typical a-Si:H 
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Figure 3.6: Dual-beam photoconductivity apparatus used for sub-band gap absorption 

characterization varies from 1200 nm to 600 nm, and filters with roll-off frequencies 

of 700 nm, 900 nm, and 1200 nm are used. For the E04 = 1.5 eV a-(Si,Ge):H, typical 

measurements were from the range of 1500 nm to 740 nm, using the same filters as 

the a-Si:H. A schematic of the device used in the dual-beam photoconductivity 

technique is shown as Fig. 3.6. 

In addition to the generation, diffraction, and filtering to the AC light beam, it is 

collimated through lenses and focused onto the sample by a mirror. The care taken 

to ensure the quality of this AC beam is critical, as the additional current generated 

by it is measured with a lock-in amplifier to determine the absorption coefficient as a 

function of photon wavelength. From this absorption coefficient data, another 

parameter known as the Urbach energy (Eov) can be determined, as shown in 

equation 3.10, where Eg is the band-gap, h is Planck's constant and v the 

wavelength. 
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The Eov value of a sample is an important characterization parameter as it 

has been shown to be a function of the material's defect density [43]. The Urbach 

energy is used as an indication of material quality, as values less than or equal to 47 

meV result only from higher quality films. 

3.6: Space Charge Limited Current Defect Measurement 

Another method for estimating the defect density of hydrogenated amorphous 

materials is the space-charge-limited current method described by den Boer [44]. In 

this method, a n+-i-n+ device is used, where the n+-layers were fabricated using rf-

glow discharge and the i-layer by HWCVD or ECR-HW CVD. The n+ layers are of 

great importance, and for a-(Si,Ge):H materials, the top n+ layers must be an alloy of 

silicon and germanium, or a non-symmetrical curve results, and the data is called 

into question. The asymmetry of the curve is caused by charge trapping at the top 

interface. The devices had the chromium dot contacts deposited on the film surface 

to define the device area and were deposited on stainless steel. The devices were 

then placed on a heated surface and placed in a light-tight box where they were 

subject to a bias voltage through the device. This voltage was then varied over the 

range from 0 V to the E04 band gap energy in 0.1 V increments. At each voltage 

point, the current flowing through the device is measured, and then the data is used 

to calculate the trap density of states as a function of energy, as shown in equation 

Eg~hv 

(3.10) 
a = a0e Eov 

(3.11) 
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3.11, where Nt is the trap density, AV is the voltage differential between two 

measured points, t the i-layer thickness, and q the charge of one electron. The 

parameter AEF is defied in equation 3.12, where kB is Boltzman's constant, and Jx 

and Vx are the current and 

r t „ a 
AE f  = k B T  In ayi 

jy. 
(3.12) 

2 y 

voltage of a measured point, respectively. By applying the data to these two 

equations, it is possible to determine the trap density at the Fermi energy, where 

defect states can greatly decrease the transport characteristics of the material. In 

general, materials with a lower SCLC defect density are better suited for photovoltaic 

applications. 

3.7: Current-Voltage Characterization 

The current-voltage characterization of a p-i-n solar cell is very important as it 

describes the behavior of the diode that is formed by the deposited layers. The J-V 

curve can also tell us much about the efficiency of the solar cell, whether it be the 

maximum power provided, the absorption efficiency noted from the short circuit 

current, or the material dependent open circuit voltage. 

3.7.1: Short Circuit Current Density 

The short circuit current is an indication of the transport properties and 

absorption efficiency of the intrinsic absorption layer. To fully understand the short 

circuit current, it is necessary to understand both the physical structure of the 

devices, and its circuit-element model, as shown in figure 3.7. The short circuit 

current density (Jsc) is the current that flows between the device terminals under 
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Figure 3.7: Equivalent circuit model for a p-i-n solar cell device 

illumination with zero bias and with a load resistance near zero. The short circuit 

current is then a measure of the current generation of the cell for a given incident 

photon spectrum. Therefore to maximize Jsc, it is necessary to use an i-layer that 

has an absorption spectrum to match the light available to power the device. This 

relation ship is shown in equation 3.13, where Nph(E) is the spectral photon energy 

distribution and G(E) is the number of electron-hole pairs collected by the device for 

each photon energy. In addition, the effects of the optical engineering of the device 

are accounted for, such as the photon absorption in the contacts and the reflection 

of photons at the device surface. These effects are represented by the (l-e00^'0) 

and (1-R) terms, respectively, as ac(E) is the absorption coefficient of the contact 

material and R is the reflection coefficient. 

Jsc = q J(1 - «)(1 - e -"- ( E K  )N p h  (E)G(E) • dE (3.13) 
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3.7.2: Open Circuit Voltage 

The open circuit voltage (Voc) is essentially the other end of the J-V 

characteristic curve. This parameter is mainly dependent upon the band-gap of the 

material used in the absorption layer. In general the wider the energy gap, the 

higher the Voc is. However, the carrier lifetimes and the depletion width of the device 

can affect the collection of charge, and thus the open circuit voltage of the device 

[45]. The behavior of the photovoltaic device under illumination can be expressed as 

equation 3.14, in which the saturation current is Js, T is temperature in Kelvin, k is 

Boltzmann's constant, and Vis the applied voltage to the device. 

J ( V )  =  J s ( e « - l ) - J s c  < 3 1 4 >  

The Voc can be expressed as equation 3.15 by knowing that an open circuit will have 

J(V) = 0 A/cm2. 

voc = ̂ - ln(^ + l) (3.15) 
q r ' 

J  S  

Then, recalling that the saturation current can be written as equation 3.16, we can 

- E „  

J 1 c v e2kT (3.16) 
$ 2r 

combine equations 3.15 and 3.16 to yield an expression for Voc as shown in 

equation 3.17 below. In this equation note the dependence upon the band-gap of 

the material's band-gap (Eg), the effects of device depletion width {Wd), and the 

effect of carrier lifetime (r). 
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y kT 
wj-ln 

( 

y 2 q 
(3.17) 

3.7.3: Fill Factor 

The fill factor is a measure of the power conversion efficiency of the 

photovoltaic cell that depends upon the maximum power output of the cell and the 

product of Voc and Jsc, as shown in equation 3.18. To obtain good fill factors, the 

Typical J-V Curve for a-Si:H device 
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Figure 3.8: Sample J-V curve for illuminated a-Si:H photovoltaic device [45] 
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diode curve must be similar to the one shown in figure 3.8, where the edges are 

sharp and the curve itself is rather square. Well designed, high-quality devices 

composed of a-Si:H have Voc of -0.85V and fill factors close to 70%. In contrast, 

devices containing 1.5eV a-(Si,Ge):H generally have fill factors approaching 65% 

with lower Voc. 

P  ff max 

V  •  I  ( 3 1 8 )  
oc sc 

The fill factor itself requires that the device be capable of efficiently converting 

the photons incident on its surface into collected carriers. Therefore the device must 

have good interfaces free from traps, outstanding material properties in the i-layer, 

as well as ohmic contacts on the top and bottom surfaces. In terms of the circuit 

model of figure 3.7, a high fill factor requires low series resistance and very high 

shunt resistance along with good current generation. 

3.8: Quantum Efficiency 

The quantum efficiency of a solar cell describes the absorption behavior of 

the cell and provides insight to the overall performance of the device. The quantum 

^(cosh(f/z,j_g-") 1 

1 + sinhOI L n )  +  a L n  •  e ~ (  
QE = 1 

l - a ~ 2 L  ~ 2  
tHi-

aLn ^ sinh(7 / Ln ) + cosh(r / Ln ) 

i J 

(3.19) 

8e = aLn 

1 + ccL„ (3.20) 
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efficiency of a solar cell is the ratio of absorbed photons to collected carriers. 

Equation 3.19 describes in detail the quantum efficiency of the solar cell, taking into 

account the surface recombination velocity S and the initial concentration of carriers 

at the illuminated surface np0. However for most cases when the diffusion length Ln 

is much less than the film thickness t, this equation can be simplified into the form 

seen as equation 3.20. In both cases however, the absorption coefficient and 

quantum efficiency are functions of photon energy. 

The QE spectrum, as shown in figure 3.9 can indicate problems with the 

device design. For example, if the QE is less than -80% at its peak value, then the 

device thickness is too large for the material that composes the i-layer. The carriers 

Sample a-Si:H Device Quantum Efficiency 
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Figure 3.9: Sample QE of a PECVD a-Si:H device with ITO contacts 
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are recombining before making it to the n+ or p+ regions and therefore not being 

collected. The device therefore needs to have a higher induced electric field across 

the i-layer, so a doping profile or band-gap grading may be necessary. Also 

important is the location of the QE maximum. This is a function of the material of the 

device, and needs to be matched to the peak of the spectrum of light available for 

energy conversion. 

The QE measurement itself is performed using the dual beam photo­

conductivity apparatus described in section 3.5 and shown in figure 3.6. A 

measurement is taken at a small forward bias to understand how well the internal 

electric field of the devices is collecting the carriers, as the forward bias will reduce 

the field somewhat. Another measurement is taken with no bias across the cell to 

observe the maximum absorption peaks and to observe the high energy photon 

absorption to deduce the quality of the p-i interface. The ratio of these two 

measurements is taken and should ideally be one, as for that case the internal 

electric field and material and interface quality is so good that the field reduction 

doesn't affect the transport of carriers; however, in practice an increase in this ratio 

is seen at low wavelengths. 
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CHAPTER 4: RESULTS AND DISCUSSION 

The data stemming from this research will be presented in four distinct 

sections. The first section will show that the Hot-Wire ECR can produce better 

material than hot wire alone at a multitude of band-gaps. The second section will 

discuss the effect of plasma power and plasma ions generated on the a-(Si,Ge):H 

materials. A third section will review the results of varying the hot wire filament 

temperature while all other parameters are held constant. The fourth section of this 

chapter will focus on the results from fabricating the first ever photovoltaic devices 

using the HW-ECR process. 

4.1 : Comparison of Hot-Wire and HW-ECR Materials 

Throughout this research, comparisons have been made between the 

materials deposited under ion bombardment conditions and those deposited in a 

plasma-free environment. Several different band-gaps were studied by combining 

silane and germane in different ratios as they flowed through the reactor. Care was 

taken in the study to ensure that aside from the presence of ions in the remote 

plasma chamber, nothing else was different. That is, when comparisons are made 

between a sample grown by HW-ECR using a 100W helium plasma and its 

analogue deposited by HWCVD, the HWCVD film was grown with inert helium 

dilution to ensure that the partial gas pressures were essentially the same. 

In this study, four distinct Tauc energy band-gaps were studied: 1.75eV, 

1.65eV, 1.55eV, and 1.45eV. These materials range from 100% Si (1.75eV) to 

approximately a 50% mix of Si and Ge (1.45 eV). Tauc gaps will be reported in this 

study to be consistent with literature; however E04 values are generally less 

ambiguous to measure. 



www.manaraa.com

53 

4.1.1: ETauc = 1.75eVmaterial 

The 1,75eV material is the easiest material to produce with high quality. This 

material has a higher tolerance for process variation, as there is no alloying with 

germanium occurring with this material. This material showed very high 

photosensitivity and photoconductivity values when deposited either by HWCVD or 

HWECR. Table 4.1 shows a direct comparison of three materials, one grown by hot­

wire alone, one with the addition of ion bombardment, and the third by hot-wire alone 

at a higher substrate temperature. Note that the material grown with ion 

bombardment attains similar values for the reported metrics as the high temperature 

HWCVD film. This indicates that ion bombardment has a similar effect as increased 

substrate temperature does, in that it aids in hydrogen removal and in increasing 

silyl surface mobility [9]. The HW-ECR films and HWCVD films grown at higher 

temperatures have physical and electronic properties that are similar to reported 

high quality a-Si:H. Substrate temperature proves to be important when depositing 

high-quality a-Si:H at high growth rate, as shown in figures 4.1 and 4.2. In figure 

Table 4.1: Comparison of best Eiauc =1.75eV materials grown by HWCVD and HWECR [9] 

MATERIAL HWCVD 250°C HW-ECR 250°C HWCVD 300°C 

CTphoto (S/cm) 9.0x10"6 1.2x10"4 1.2x104 

CTphoto/^Dark Ratio 2.7 x104 1.1x105 4.2x105 

Eov (meV) 64 46 45 

a(1.2eV) (cm-1) 15 1.0 0.7 

Microstructure RS| 0.23 0.11 0.15 

SCLC def. (cm3-eV) 5.0x1016 1.0x1016 1.0x1016 
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4.1, the Urbach energy of the samples is shown as a function of substrate 

temperature. Notice that at the highest substrate temperatures, an optimal Eov is 

seen at approximately 45 meV for both deposition types. This occurs because the 

hydrogen abstraction and surface mobility of of the adding silyl radicals is no longer 

thermally limited. At lower temperatures where the there is not enough thermal 

energy to efficiently add new silyl radicals, the ions add the needed energy to create 

a more ordered system that results in better Eov values. Figure 4.2 shows the 

microstructure of a-Si:H as a function of substrate temperature, and again we see 

a-Si:H Urbach Energy vs. Temperature at 105 mTorr-cm 
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Figure 4.1: Urbach energy values for a-Si:H that exhibit a trend for decreasing Eov with 

increased substrate temperatures [46] 
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Figure 4.2: a-Si:H microstructure (R) as a function of substrate temperature indicating 

improvement of R with ion bombardment [46] 

that the ions produce a reduced microstructure [35,46], indicating a more ordered 

system, until higher substrate temperatures are used. 

4.1.2: Ejauc = 1.65eV material 

The 1.65eV material has a slight amount of germanium added to the reactive 

gasses to introduce enough Ge into the amorphous matrix to decrease the bandgap 

slightly. This material deposits almost as quickly as the 1.75eV material, however 

there is hydrogen dilution built into the reaction chemistry due to the germane being 

a 10% mixture with hydrogen gas. The hydrogen dilution is for safety in handling the 
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compressed germanium cylinders, and was therefore not changed during the course 

of the research. 

Table 4.2 shows a comparison of HWCVD and HW-ECR material having 

Tauc's gaps of 1.65 eV that were deposited at identical substrate temperatures, 10 

mTorr chamber pressures, helium dilutions, and 2200°C filament temperatures. 

Table 4.2: Comparison of Ejauc = 1.65eV materials grown by HWCVD and HWECR 

MATERIAL HWCVD 250°C HW-ECR 250°C 

CTphoto (S/cm) 3.0x10"7 1.5x10"6 

CTphoto/CTDark Ratio 1.1X103 1.1x105 

Eov (meV) 63 46 

a(1.2eV) (cm'1) 50 7 

Microstructure Rsi .25 .24 

Microstructure Rce .11 .02 

Notice that these materials have large differences in their photo­

conductivities, Urbach energies, and microstructure ratios. Again, this is due to the 

temperature limitation of the HWCVD material. If the deposition temperature was 

increased, undoubtedly an improvement in the material would ensue, just like the a-

Si:H data, especially since there is a relatively low amount of germanium 

incorporated into this material. 

The material grown without ion bombardment is much more defective than its 

analogue grown with the assistance of ions. This can be deduced from the sub 

band-gap absorption curves shown in figure 4.3, and is indicated by the Urbach 

energy values. The sub band-gap absorption spectra is determined by the disorder 
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Sub Bandgap Absorption Coefficient for ETauc =1.65 
eV a-(Si,Ge):H 
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Figure 4.3: Sub band-gap absorption spectra comparison for a-(Si,Ge):H grown using 

different methods but with the same PD and substrate temperature 

of the material, that is, absorption occurs when there is an allowable transition from 

one state to another. If the material is perfectly crystalline, then on would see 

essentially zero absorption between the band gap. In the amorphous material, 

however, there is inherent disorder in the bond lengths and strains, making a 

continuum of states between the band edges. When there is more disorder in the 

system there are more defect states to act as traps for carriers, and the absorption 

coefficient of the material will be higher. In figure 4.3 when comparing the HWCVD 

film to the HW-ECR material, one sees a drastic increase in the mid-gap absorption, 

and thus mid-gap defect states, along with a great increase in the tail-states that 
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compose the shoulder of the curve. In the HWCVD material, the shoulder is much 

broader, thus there are many more defect states in that material, and it is less suited 

for photovoltaic application. 

4.1.3: Erauc = 1-55eVmaterial 

The 1.55eV material contains much more germanium than the 1.65eV 

material, and is therefore more difficult to deposit with high quality characteristics. 

Table 4.3 shows a comparison of two 1.55eV films that were grown at identical 

pressures, and substrate temperatures, varying only in the presence of ions. The 

material grown with hydrogen ion bombardment is outstanding, with very low Urbach 

energy and high photo-conductivity values for that band-gap. In Table 4.4, a 

comparison is shown between two materials grown using HWCVD only, however 

one had additional hydrogen dilution. This set of films shows how the penetrating 

property of the hydrogen radicals and the tuning of the gas phase reactions aids in 

the removal of excess hydrogen. The hydrogen dilution added to the material, in 

combination with the aided in creating a more ordered structure as deposition 

Table 4.3: Comparison of ETaUc = 1.55eV materials grown by HWCVD and HWECR 

MATERIAL HWCVD (H dil.) H+ ion HW-ECR 

Ophoto (S/cm) 5.2x10"7 2.8x10"6 

Ophoto/tToark Ratio 9.7x103 6.6x104 

Eov (meV) 51 44 

a(1.2eV) (cm"1) 20 .8 

Microstructure Rsi .45 .17 

Microstructure Rae .21 0 
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Table 4.4: Comparison of ExaUc = 1.55eV materials grown by HWCVD with and without 

hydrogen dilution 

MATERIAL HWCVD HWCVD -low Tfi, 

Ophoto (S/cm) 2.6x10"7 5.2x107 

CTphoto/ooark Ratio 4.2x102 9.7x103 

Eov (meV) 81 51 

a(1.1eV) (cm1) 200 20 

Microstructure RSi .31 .45 

Microstructure RGe .19 .21 

Sub band-gap spectra for 1.55 ev Tauc Gap Materials 
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ensued. The more ordered structure then resulted in better material properties, as 

evidenced in table 4.4. Figure 4.4 is a sub band-gap spectrum comparison among 

the three films shown in the previous two tables. Note the decrease in mid-gap 

absorption coefficient as first filament temperature is lowered, then ions added. This 

shows that in addition to the effects of lowered filament temperature and hydrogen 

dilution, the addition of ions to the reactive mixture further improves the material, as 

postulated by Robertson's model [18]. 

4.1.4: Erauc = 1.45eVmaterial 

The lower the band-gap of the material, the more difficult it becomes to 

deposit the material at growth rates above 1 ang/sec and maintain properties of a 

high quality material. With this material, the filament temperature was again varied 

to obtain the best possible material. In addition, the substrate temperature was 

varied in an attempt to optimize the material parameters. High quality material was 

deposited by hydrogen plasma HW-ECR material. No material that approached the 

same characteristics of the ion bombarded material was produced. At this band-gap 

Table 4.5: Summary of ExaUc = 1.45eV material grown by Plasma HWECR 

MATERIAL HW-ECR 250°C 

CTphoto (S/cm) 

ctphoto/ooark ratio 

1.4x10"6 

4.7x103 

Eov (meV) 

a(1.1eV) (cm'1) 

Act. Energy (eV) 0.78 

47 

5 
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the filament temperature was ~300°C lower than used to deposit the a-Si:H material 

discussed earlier. The decrease in filament temperature resulted in a substantial 

decrease in deposition rate, and thus the amount of material deposited by PECVD 

and HWCVD was only 30% different. This could account for the inability to deposit 

quality material by HWCVD alone. Other groups have reported difficulty depositing 

material with band gaps this low, and they needed to reduce filament temperature to 

obtaining materials that were useable [47,48]. In these previous studies, however, 

the reactor geometry was substantially different. The 1.45eV film that was grown by 

HW-ECR had photo-conductivity and light to dark ratios that equaled NREL's 

material, which used a substantially smaller filament to decompose the gases [48]. 

This had the effect of reducing the zone around the filament where decomposition 

could occur, and effectively increased the PD product. In the HW-ECR reactor, 

there is already a large distance between the filament and substrate, however since 

lower pressures are used in the combined reactor, equivalent PD products were 

used to produce each material. The HW-ECR material had a lower Urbach energy 

at 47 meV than the NREL material, which is reported as having an urbach energy of 

53 meV [48]. 

4.2: ECR Plasma Effects 

The effects of plasma power, and thus the ion energy and density, was 

studied for some of the band-gap materials studied. The effects of plasma power on 

the photo to dark conductivity ratio and the Urbach energy of HW-ECR materials 

was studied, and some interesting results were observed. 

In the 1.65eV Tauc's gap material, a definite trend where Urbach energy 

decreased with increasing plasma power was observed and is shown as figure 4.5. 

This trend is expected, because more excess hydrogen would be removed as more 
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Figure 4.5: Urbach energy decreasing with increasing plasma power in 1.65 eV materials 

deposited by HW-ECR using He plasma 

ions are present with sufficient energy to break surface hydrogen bonds. This trend 

was observed with materials deposited using He plasma, not hydrogen plasma, 

which from other results would undoubtedly yield better results. 

Similarly, the photo to dark conductivity ratio improves with increasing plasma 

power. Figure 4.6 shows these results for three band gaps of a-SiGe:H material. 

The 1.65 eV material shows a definite increase in photosensitivity with increasing 

power. The other band-gap materials also exhibited some degree of improvement in 

both photosensitivity and photoconductivity with the addition of plasma power, as 

shown in figures 4.6 and 4.7, respectively. The lower band gap materials do not 

require as much ion energy to create good material, because there is an increase in 
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Photosensitivity vs. Plasma Power 
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Figure 4.6: Photo to dark conductivity ratio as a function of plasma power for three band-

gap materials deposited by HW-ECR [46] 

the amount of germanium incorporated into the film, which has lower bond energies 

with hydrogen; therefore fewer, less energetic ions will help to remove excess 

hydrogen efficiently. In addition, the filament temperature was held constant through 

these experiments, and therefore the etching action of hydrogen radicals produced 

by the hot filament would aid with the effective removal of excess hydrogen. 

The photoconductivity values of the materials follow a similar trend as the 

photosensitivity. The higher gap materials require more plasma energy to produce a 

high photoconductivity, where less energy is required in the lower gap material. 

Following a similar argument, the removal of excess hydrogen during deposition is 

easier for the lower gap material, and therefore less energy in the form of ion 

bombardment is required to generate high photoconductivity values. 
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Photoconductity vs Plasma Power for Various 
Bandgap a-(Si,Ge):H 
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Figure 4.7 : Photoconductivity as a function of plasma power for three band-gap material 

deposited by HW-ECR using He plasma 

The result obtained by increasing the ion bombardment energy and density is 

consistent with literature. There have been reports of degradation in a material's 

physical and electrical properties after increasing the ion bombardment energy 

beyond an optimal value [12]. The HW-ECR materials exhibit that same quality, 

which can be readily seen in figures 4.6 and 4.7 as the lower gap materials reach 

their optimum at lower values of plasma power and then degrade as more plasma 

power is added. It seems that the effect of the ions impacting the growing film 

surface is changing from removing excess hydrogen to removing the hydrogen and 



www.manaraa.com

65 

imparting damage to the growing structure. For example, it is easy to imagine a He 

ion that has enough energy to not only break a weak Si-H bond, but to also continue 

into the matrix and disrupt a Si-Si bond or even remove slightly interior hydrogen 

and introduce a dangling bond. The optimization of the density and energy of the 

impacting ions is the key to high quality material. 

In materials with 1.55eV Tauc gap and lower, hydrogen plasma was used 

instead of He plasma. The hydrogen is a reactive species in this deposition 

reaction, so the exact nature of its role is more ambiguous than the He ions, which 

can only impart energy through collision. The hydrogen plasma materials exhibited 

excellent properties, but yet the growth rates were similar to the growth rates of the 

He plasma materials. There are three possible explanations for this behavior. First, 

since hydrogen is a smaller atom, it can penetrate further into the lattice to remove 

more excess hydrogen like Robertson's model postulates [18]. Second, the 

hydrogen may be passivating buried dangling bonds as it makes its way into the 

growing film, thus reducing defect density and improving the overall quality of the 

material. Third, due to the reactive nature of the hydrogen, it is likely much more 

effective at breaking surface Si-H bonds than He is, as the energy of the ion only 

needs to overcome the energy required to form the transition state from a Si-H bond 

to a H-H bond, and not the entire Si-H bond energy. Therefore, a lower power H2 

plasma produces a larger density of H+ ions that have enough energy to remove 

surface hydrogen, but not to impart impact damage to the growing matrix. These 

properties make the hydrogen plasma ideal for depositing low-gap materials that are 

very sensitive to ion damage due to the low energy of the Ge-H bond. 
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4.3: Filament Temperature Effects 

In order to deposit high quality hydrogenated low-gap silicon germanium 

alloys, it was necessary to reduce the filament temperature from the ~2200°C used 

for a-Si:H deposition to ~1900°C. With the reduction in filament temperature, an 

improvement in the quality of ETauc = 1.55 eV material deposited by HW-ECR CVD 

was seen, however, the analogous material deposited by HWCVD was unchanged. 

Table 4.6: Comparison of Exauc = 1.55eV materials grown by HWCVD at different filament 

temperatures with hydrogen dilution 

MATERIAL Tfi, = 2200°C Tm = 2100°C 

crphoto (S/cm) 6.4x10"7 5.2x10 7 

CJDark (S/Cm) 6.4x10"11 5.4x10"11 

CTphoto/ODark R^tiO 1.0x104 9.7x103 

Eaci (eV) 0.83 0.84 

Eov (meV) 51 51 

a(1.1eV) (cm'1) 17 20 

Microstructure Rsi .45 .45 

Microstructure RGe .25 .21 

Table 4.6 shows a comparison between two films deposited by HWCVD under the 

same dilution, substrate temperature, and gas flow conditions; but varying in the 

temperature of the catalyzing filament. There is little observed difference between 

the two materials, however, which is puzzling. According to the MGP model, a 

decrease in deposition rate should improve the material; however the 30% reduction 

in growth rate did not affect the material. The increase in time between silyl addition 
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events provided by this lower deposition rate should allow for more excess hydrogen 

to be removed, thus improving the material quality. 

When hydrogen plasma ions are added to the deposition chemistry, we see a 

different picture emerge when the filament temperature is decreased. As table 4.7 

shows, reducing the filament temperature increases the photo-conductivity, the 

Table 4.6: Comparison of Exauc = 1.55eV materials grown by HW-ECR CVD at different 

filament temperatures with hydrogen plasma 

MATERIAL Tfi, = 2200°C Tfi, = 2100°C 

CTphoto (S/cm) 2.8x10"6 5.4x10"6 

CTDark (S/Cm) 7.3x10"11 8.2x10"11 

Ophoto/ODark RstiO 3.8x104 6.6x104 

Eaci (eV) 0.82 0.82 

Eov (meV) 47 44 

a(1.1eV) (cm1) 10 0.9 

Microstructure Rsi .26 .17 

photo to dark conductivity ratio, and decreases both the Urbach energy and sub 

band-gap absorption coefficient of the material. These results indicate that a 

reduction in filament temperature affects the deposition chemistry in a way that is 

beneficial to the resulting material. But what is occurring when the filament 

temperature decreases? 

At even lower band-gaps further reduction in filament temperature was 

required to deposit materials using either method. However, as the filament 

temperature is reduced for these low gap materials, and decrease in the band-gap of 
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the HWCVD materials is observed, as shown in figure 4.8. The band-gap of the 

HW-ECR material stays relatively constant while a decrease in band-gap is seen in 

the HWCVD materials. The reactivity of the filament has been reported to become 

much less effective for silane at lower temperatures [24], and this lower reactivity 

may be the cause for the decrease in the band-gap as less silicon is decomposed 

and incorporated into the material as filament temperature decreases. The HW-

ECR material would maintain a higher band-gap because hydrogen ions would 

decompose the silane as they would in PECVD; supplying the required silyl radicals 

for adding silicon to the deposited material. As the decomposition probability of 
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silicon decreases, the decomposition probability for germane is little-changed , and 

fewer hydrogen radicals are available for hydrogen abstraction. 

The reduced dissociation probability of silane as filament temperature 

decreases is beneficial to the MGP model, as it would promote the production of silyl 

radicasl either directly through incomplete decomposition or by reducing the amount 

of silane decomposed by the filament allowing the production of silyl radicals through 

the addition of hydrogen radicals to silane molecules as shown by equation 2.2 on 

page 15 of this dissertation. Whatever the physical reason for the reduced 

incorporation of silicon into the material, the reduced filament temperature is 

required for depositing high quality HW-ECR materials at lower band-gaps. 

4.4: Photovoltaic Device Results 

Photovoltaic devices containing i-layers deposited by the HW-ECR process 

were fabricated for comparison against conventional PECVD devices. The actual 

device deposition process consisted of depositing a PECVD n+ layer, then the 

HWECR intrinsic layer, followed by an intrinsic buffer layer and a p+ layer both 

deposited by ECR-PECVD. This process required two air breaks, which is not an 

optimum process, however the HW-ECR reactor cannot deposit doped materials, as 

the required gases are not presently connected to the system. The following results 

show that the HWECR solar cells are close in performance to the PECVD cells 

deposited by this research group. While there is still a problem with the device 

series resistance, the quantum efficiency data shows comparable performance to 

the best a-Si:H devices deposited entirely by ECR-PECVD. 
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4.4.1: J-V Results 

The current voltage characterization of the a-Si:H devices deposited by HW­

ECR show a problem with the internal series resistance of the device. The series 

resistance problem is most likely a process problem concerning the interface with 

the top p-layer of the device, as it is critical to have a smooth graded transition here 

to prevent the blocking of holes from entering into the p-layer for collection. Work is 

ongoing to optimize the process and show a J-V curve that is on par with the best 

thin film devices. Figure 4.9 shows the current J-V characteristic of an a-Si:H device 

deposited with a HW-ECR intrinsic layer. The device shows a rounded transition 

when compared to a recent PECVD device as shown in figure 4.10, indicating the 

increased series resistance of the HWECR device. 

Current vs. Voltage for 2-7393 (HW-ECR) 
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Figure 4.9: Sample J-V curve for an a-Si:H device with a HW-ECR i-layer 
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Figure 4.10: Sample J-V curve for an a-Si:H ECR-PECVD solar cell 

The cell described by figure 4.9 does have a higher open circuit voltage and a 

higher short circuit current than the PECVD device shown in figure 4.10. The 

increase in short circuit current probably arises from the 30% increase in thickness 

that the HW-ECR device has over the PECVD device. The fill factor on the ECR-

PECVD device is substantially better than the HW-ECR device, however when the 

series resistance is optimized, the fill factors should be comparable. 

4.4.2: Quantum Efficiency Results 

While the l-V characteristics of the two devices are different due to the series 

resistance problem of the HW-ECR device, the quantum efficiency result are quite 

similar for the two devices, indicating that the basic device structures are sound and 

materials are of the same quality. Figure 4.11 shows the quantum efficiency spectra 
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of the HW-ECR device while figure 4.12 shows the QE results of the ECR-PECVD 

device. Due to the increased thickness of the HW-ECR device, a slight shift to 

longer wavelengths is seen when compared to the PECVD device. The device 

thickness also causes the QE peak to be slightly wider throughout its breadth. The 

PECVD device has enhanced low wavelength QE as seen by the value of the 

relative QE at 400 nm. In general enhanced QE at longer wavelengths is required 

for solar cells as that is where largest intensity of energy in the solar spectrum that 

falls on earth is located. 

The difference in QE is slight and indicates that the HW-ECR device is better 

for photovoltaic applications, although no light degradation studies have been 

performed. The wider QE peak indicates enhanced carrier collection over a wider 

QE Ratio Spectra 

"s 
% 
!q 

I 
IS 
!q 

re 
cc 
UJ 
0 

1.5 

1.4 

1.3 

1.2 

1.1 

1 

0.9 

O ECR-PECVD 

• HW-ECR 
o o 

6 o • 8: 

* * 

* • • 

0.8 

400 500 600 

Wavelength (nm) 

700 800 

Figure 4.13: QE ratio as a function of wavelength for ECR and HW-ECR devices 



www.manaraa.com

74 

range of wavelengths. This difference may be due to the thicker absorption layers in 

the HW-ECR device when compared to the PECVD device, however. 

The QE ratio spectrum of biased QE vs. unbiased QE is —1.1 for the HW-ECR 

solar cell as is shown in figure 4.13. The HW-ECR cell performs better than the 

ECR-only cell that is used for comparison here, however typical ECR-PECVD 

devices have ratios which stay below 1.2 at all wavelengths. The QE ratio confirms 

that the material deposited for the i-layer of the HW-ECR device has a low defect 

density. Since the material grown on 7059 glass had a low E0v, we assume that it 

has a low defect density in its band-tails and in the mid-gap region. And, since the 

material is assumed to have few defects, then there should be a high electric field in 

the i-layer of the device which will cause carrier transport to be field-limited rather 

than diffusion-limited, making the QE ratio of the device close to one. Since the 

measured QE ratio of the device is near 1.1 throughout the wavelength range, the 

data is self-consistent and the material must have a low defect density. 
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CHAPTER 5: CONCLUSIONS 

The objective of this research is to show the effects of ion bombardment on 

the quality of a-(Si,Ge):H materials by using a novel combined hot-wire and remote 

electron cyclotron resonance (ECR) plasma reactor. The data obtained from 

comparing material deposited with and without ions present are used to suggest 

improvements to the standard deposition model outlined by Matsuda [1], 

Gallagher[2], and Perrin [3] (the MGP model) to account for the effects of ion 

bombardment. Also, the first ever photovoltaic devices containing i-layers deposited 

by this novel technique were to be deposited. In the following chapter, conclusions 

regarding the improvement of physical properties ion bombardment makes; what 

modifications should be added to the MGP model to reconcile it with the fact that 

high ion bombardment condition deposit quality materials; and the performance of 

HW-ECR photovoltaic devices are presented. In addition, suggestions for future 

research will be presented. 

5.1: HWCVD and HW-ECR Materials 

From the results presented in chapter 4, it appears that the addition of ion 

bombardment to the HWCVD process produces materials with high quality at lower 

temperatures than with HWCVD alone. The a-(Si,Ge):H materials deposited by HW­

ECR exhibit properties more suited for photovoltaic applications than the HWCVD 

material grown at the same substrate temperatures. In addition, many of the 

materials deposited with the HW-ECR method showed properties that were radically 

better than their HWCVD counterparts. The addition of ion bombardment, whether 

He or H2 plasma ions, improves the material. This result indicates that not only 

penetrating hydrogen ions which aid in the removal of excess hydrogen during 
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growth improve the material; but that neutral ions, capable of imparting energy to the 

material through impact energy alone, aid in the production of high quality materials. 

At all band-gaps studied, ion bombardment produced better material. At the 

lowest band-gaps studied, materials produced by HW-ECR were much better than 

films deposited without ions. The drawback to HW-ECR is the reduction in growth 

rate. A higher throughput reactor needs to be fabricated in order to study the effects 

of ion bombardment at even higher growth rates. All the materials were deposited at 

growth rates of ~1 À/sec. or greater, placing them in the realm of high growth rate 

materials. 

5.2: Adaptations to the MGP Model 

Since ion bombardment definitely improves the material quality of a-Si:H and 

a-(Si,Ge):H, the MGP model is not complete and needs to include the effects of ion 

bombardment. As discussed in Chapter 1, John Robertson of Cambridge University 

has developed a model for the role of hydrogen ions in the deposition process that 

involves the spinodal decomposition of the material and the hydrogen ions 

penetrating the material matrix and removing the hydrogen in the form of an H2* 

group that diffuses readily to the material surface and out, thus removing it from the 

material [18]. The material quality-limiting process is the removal of excess 

hydrogen, and through Robertson's model, a pathway for that process involving 

hydrogen ions is put forward. 

In this research, bombardment of the growing film by hydrogen ions improved 

the material drastically. In addition, when compared to a film where helium ions 

were used, the films grown using hydrogen ions exhibited much better properties, 

indicating that non-reactive ions aid in film growth in a different manner than the 

reactive hydrogen species. The hydrogen is much more efficient at removing 
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excess hydrogen from the growing material than the He ions. Robertson's model 

[18] is supported by these results as the model depends upon the bonding of the 

hydrogen ion to interior hydrogen and the out-diffusion of the resulting complex. 

Helium ions could not bond to an interior hydrogen and promote this hydrogen 

removal, so hydrogen ions should effect a greater improvement in the material 

properties than helium. 

In addition to the interior removal of hydrogen, the H+ ions can also remove 

surface hydrogen much like atomic hydrogen can within a certain "growth zone" in 

the outer few atomic layers of the material. Robertson proposes this behavior also, 

and it is intuitive due to the energetic and reactive nature of the H+ ions. This is 

similar to the proposal of Dalai [4], where he theorizes that ions can break "wing-

bonded" hydrogen that is bound at the sides of added silyl radical, rather than 

projecting out from the surface. The hydrogen bound at the surface are readily 

removed by other abstraction methods, such as the MGP model's postulated silyl 

radical abstraction. This view of the surface reaction chemistry is consistent not only 

with results generated here, but also with empirical results of PECVD depositions of 

microcrystalline silicon and alloys. In these materials, a large density of hydrogen 

ions is required to form nucleation sites and deposit high quality materials. The high 

hydrogen dilution causes a large flux of ions to be incident on the deposited film 

surface, where weakly bound hydrogen can be removed permitting nucleation of a 

crystalline phase. After this nucleation, the hydrogen dilution can be eased as there 

is no longer any interior hydrogen in the crystallites, only in the amorphous tissue 

surrounding the crystallites. Thus, after nucleation and initial growth, only enough 

hydrogen ions are needed to remove interior excess hydrogen from the interstitial a-

Si:H regions. Like any feasible growth model, this model is consistent with similarly 

deposited a-Si:H and nanocrystilline silicon. 
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Figure 5.1 : Schematic diagram representing postulated methods of excess hydrogen removal 

in the growth of hydrogenated silicon-germanium alloys in environments with 

ions present 

An improvement is seen when He ions are used compared to the HWCVD 

materials, so the helium ions must play a role in deposition chemistry. The most 

probable role for the helium ions is the enhancement of surface mobility of the ad-

radicals during deposition. The enhancement of the surface mobility of the germyl 

and silyl radicals will promote a more uniform surface growth and a reduction of 

included defects. The helium ions may also contribute to the removal of surface 

hydrogen through physical etching of the weak bonds at the surface, and like the 

hydrogen ions, in a "growth zone" just below the surface. The growth zone for the 
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helium ions would be narrower than for hydrogen ions, however, as the larger ions 

would contact a radical or bound hydrogen before penetrating into the film very far. 

So how can these ideas be reconciled with the standard MGP growth model? 

The effects of ions can be simply added in addition to the existing model. It is wholly 

reasonable that SiH3 is the main radical responsible for deposition of quality 

hydrogenated amorphous silicon-germanium alloys, and the process of silyl-

mediated hydrogen abstraction is possible, so the effect of ions is to offer other 

pathways for the removal of excess hydrogen. Figure 5.1 summarizes the methods 

of excess hydrogen removal in this growth model, while still maintaining that film 

growth arises from the addition of mainly silyl radicals. 

5.3: HW-ECR Photovoltaic Devices 

The first ever solar cells with i-layers deposited by HW-ECR have been 

fabricated at Iowa State University. These devices show that this novel process can 

produce photovoltaic material that is as good as other methods and produces the 

devices at high growth rates. While the devices are still limited by the air-breaks 

inherent in the process design, with careful optimization, the series resistance of the 

HW-ECR devices will be reduced and the l-V curve will be comparable to the best 

ECR-PECVD devices. Presently, the quantum efficiency of the HWECR devices 

shows reduced low wavelength values, but increased breadth of the QE peak, and a 

slight shift to lower wavelengths. This enhanced carrier collection at lower 

wavelengths makes the HW-ECR devices well suited to photovoltaic applications. 

When the series resistance problem is resolved, the devices will be of exceptional 

quality and efficiency. 
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5.4: Future Research Directions 

Further efforts should be spent looking at the effect of reduced filament 

temperature on the deposition chemistry. The difference in decomposition 

probability between germane and silane is interesting and a more precise study of 

this reaction should be undertaken. 

Pushing the growth rate of low-gap materials to higher levels should be 

investigated by using a less-dilute germane-hydrogen mixture for supplying the 

germane to the reactor. The 9:1 dilution of germane gas prevented the total flow 

rate of reactive gases (SiH4 and GeH4) from being over 5 seem in the process used 

for depositing the lowest gap materials. In contrast, a-Si:H was deposited using 12 

seem of silane, and thus had a seven times greater deposition rate. By studying the 

higher growth rate HW-ECR material, it can unambiguously show the effects of ion 

bombardment. 

A computer simulation that takes into account the effects of ion bombardment 

should be developed to probe further the exact effect of ions in the deposition 

chemistry. Many papers have studied molecular dynamic simulations of the MGP 

model, one that examines Robertson's model would be a nice comparison. 

Finally, some effort should be put into applying the HW-ECR process to large-

area depositions. The ability to reduce substrate temperature would make it even 

easier to deposit on temperature-sensitive materials, even though some groups are 

already using HWCVD to deposit a-Si:H on plastics and other substrates in large 

area applications. 
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APPENDIX 1: HW-ECR REACTOR 

Photograph of the HW-ECR reactor showing the control equipment, the 

vacuum system, the hot-wire power supply, and the gas flow equipment. Tantalum 

wire was used as filament material, and was cut to 40 cm length, then wound on a 

3/16 inch rod. The filament was then stretched to a 7 cm installed length when used 

for HWCVD or HWECR processing. 

Figure Al.l: Hot-wire-ECR reactor photograph. The control rack holds an MKS baratron 

pressure readout, a digital ion-gauge readout, a gas flow control panel, a master 

gas switch, and two magnet power supplies. Mass-flow controllers are to the 

right in the photograph. 
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